

Climate of the Ocean

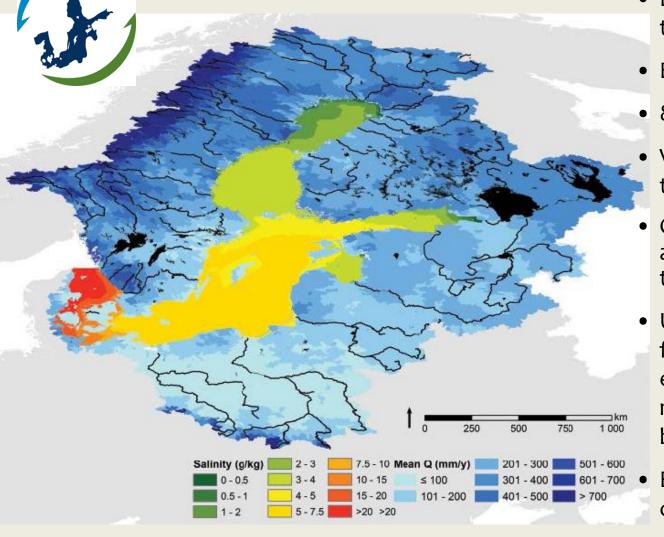
Lecture 1: Introduction and fundamental processes of the climate system

Prof. Dr. Markus Meier Leibniz Institute for Baltic Sea Research Warnemünde (IOW)

markus.meier@io-warnemuende.de

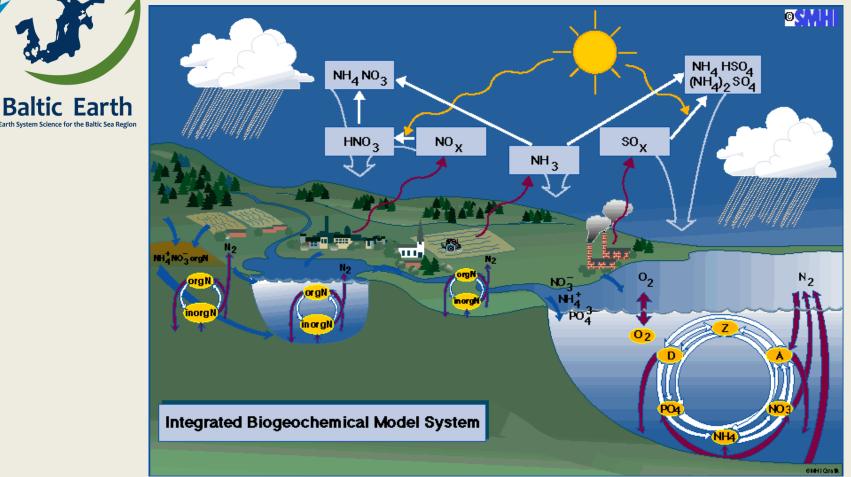
General information

- about the course: Climate of the Ocean (winter term), Climate of the Baltic Sea Region (summer school at the end of August/beginning of September), both are part of the master in physics at Rostock University
- Professor in physical oceanography at the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) and Rostock University
- Baltic Earth <u>www.baltic.earth</u>


Baltic Earth http://www.baltic.earth/

Earth System Science for the Baltic Sea basin

The Baltic Sea region


Meier et al. (2014, Eos)₄

- Basin: 2.13 Mill. km² (20% of the European continent)
- Baltic Sea: 380 000 km²
- 85 million in 14 countries
- Variable climate and topography
- Considerable seasonal, interannual, decadal and longterm variations
- Unique, challenging region for climate and environmental studies (data, models and observations, budgets)
- Environmental issues of concern

Baltic Earth Conference 2016, Nida, Lithuania, 13-17 June 2016

Earth System Science for

Earth system science treat the Earth as an integrated system and seeks a deeper understanding of the physical, chemical, biological and human interactions that determine the past, current and future states of the Earth

- Information about the course
- Rostock University (master in physics): 3 ECTS (15 lectures á 90 min, tutorials and exercises, 45 minutes examination)
- October 12, 19, 26
- November 2, 9, 16, 23, 30
- December 7, 14, 21
- January 4, 11, 18, 25
- Compensation for two lectures in December and January 12 x 15 min = 180 min, hence 13:15-15:00 without break

Course content

- Fundamental processes of the climate system (greenhouse effect, radiation balance, climate sensitivity, stability and feedbacks)
- 2. Basic methods of the analysis and modeling of the climate system with focus on the ocean
- 3. Equations of motion of the large-scale circulation with focus on the ocean
- 4. Coupled atmosphere ocean sea-ice models
- 5. Spatial and temporal variability of the climate system
- 6. Anthropogenic climate change and natural climate variability (externally and internally driven climate variability)

Other courses

- WS: Einf in die Atmosphärenphysik und Physik des Ozeans
- WS: Klima des Ozeans
- WS: Prozesse im Küstenozean
- WS: Dynamik der Atmosphäre
- SS: Klima in der Ostseeregion (Summer school)
- SS: Theoretische Ozeanographie
- SS: Numerische Methoden
- SS: Physik des Klimas

Literature

- IPCC (<u>www.ipcc.ch</u>, open access)
- BACC I and II (<u>www.baltic.earth</u>, open access)
- NOSCCA (<u>http://link.springer.com/book/10.1007/978-3-319-39745-0</u>, open access)
- Peixoto and Oort: Physics of the Climate (1992)
- Olbers, Willebrand and Eden: Ocean Dynamics, Springer (2012)
- Papers (Knutti 2010, Pages 2k consortium 2013, Hargreaves and Annan 2014, etc.)
- Lectures from Askö 2015 available as youtube movies @www.baltic.earth, Askö 2016 (pdf)

Literature

- Courtesy: Lectures from Ulrich Cubasch
- Lecture notes: Dietmar Dommenget <u>http://users.monash.edu.au/~dietmard/teaching/domm</u> <u>enget.climate.dynamics.notes.pdf</u>
- Hamburger Bildungsserver <u>http://bildungsserver.hamburg.de/klimawandel/</u> (only in German)

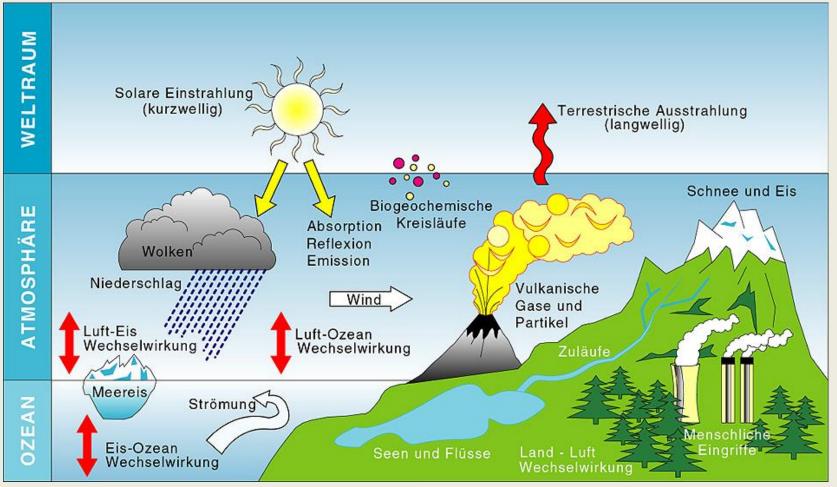
Relevant books for the Baltic Sea

- BACC II Author Team (2015). Second assessment of climate change for the Baltic Sea basin. Regional climate studies. Berlin, Springer.
- Feistel, R., Nausch, G. and N., Wasmund (Eds), 2008. State and Evaluation of the Baltic Sea, 1952–2005. A detailed 50-year survey of Meteorology and Climate, Physics, Chemistry, biology, and Marine Environment. John Wiley & Sons, Inc., Hoboken, New Jersey, USA.
- Fennel, W. and T., Neumann, 2004. Introduction to modelling the Marine Ecosystems. Elsevier Oceanography Series 72.
- Leppäranta, M. and K. Myrberg, 2009. Physical oceanography of the Baltic Sea. Praxis publishing Ltd, Chiester, UK, Springer-Verlag Berlin Heidelberg New York ISBN 978-3-540-79702-9.
- Wulff, F., L. Rahm & P. Larsson (Eds), 2001. A Systems Analysis of the Baltic Sea. Ecological Studies, Vol. 148. Springer, Berlin.

Climate of the Ocean

Lecture 1: Introduction and fundamental processes of the climate system

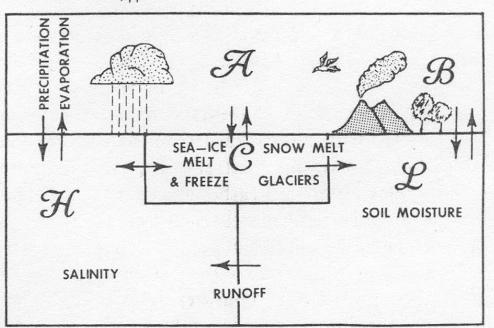
Questions?



Definition of climate

 Climate in a narrow sense is usually defined as the average weather, or more rigorously, as the statistical description in terms of the mean and variability of relevant quantities over a period of time ranging from month to thousands or millions of years. The classical period is 30 years, as defined by the World Meteorological Organization (WMO).

(Houghton, J. T., et al. (eds.), 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 881 p.)


The climate system

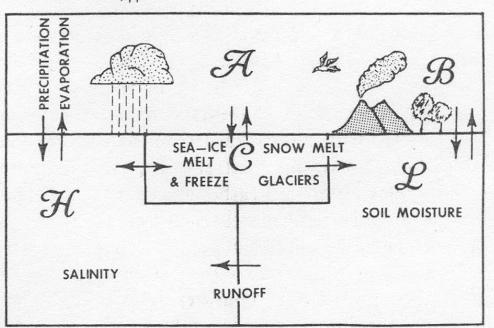
(Source: Hamburger Bildungsserver)

THE TOTAL CLIMATE SYSTEM AND ITS SUBSYSTEMS

- $\mathcal{A} = \operatorname{atmosphere}$
- $\mathcal{H} = hydrosphere (ocean)$
- C = cryosphere (snow & ice)
- \mathcal{L} = lithosphere (land)
- \mathcal{B} = biosphere

(Source: Peixoto and Oort 1992)

A: atmosphere


- small heat capacity, fast response time to an imposed change
- time scales:
 - annual cycle,
 - synoptic activities (days to weeks)
 - decadal variability

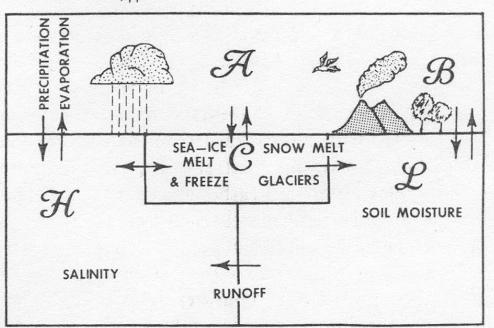
variations are called "weather"

THE TOTAL CLIMATE SYSTEM AND ITS SUBSYSTEMS

- $\mathcal{A} = \operatorname{atmosphere}$
- $\mathcal{H} = hydrosphere (ocean)$
- C = cryosphere (snow & ice)
- \mathcal{L} = lithosphere (land)
- \mathcal{B} = biosphere

(Source: Peixoto and Oort 1992)

H: hydrosphere


ocean, lakes, rivers, precipitation, ground water

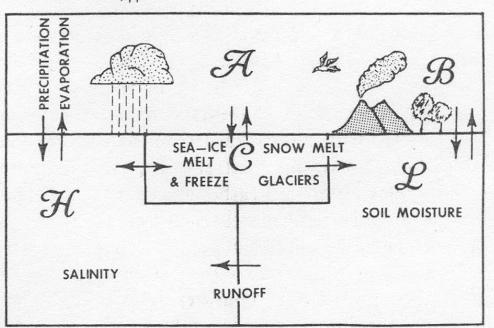
- high heat capacity, small albedo
- the ocean is divided into:
 - the deep ocean, depth (1000 m),
 - time scale: 100 1000 years
 - mixed layer, depth (100 m),
 - Time scale: weeks, months

THE TOTAL CLIMATE SYSTEM AND ITS SUBSYSTEMS

- $\mathcal{A} = \operatorname{atmosphere}$
- $\mathcal{H} = hydrosphere (ocean)$
- C = cryosphere (snow & ice)
- \mathcal{L} = lithosphere (land)
- \mathcal{B} = biosphere

(Source: Peixoto and Oort 1992)

C: cryosphere


Inland glaciers of Greenland and Antarctica and other continental glaciers and snow fields, sea ice, permafrost

- high albedo, small thermal conductivity
- largest freshwater reservoir
- Time scales:
 - inland ice: 10⁴ 10⁵ years
 - Sea ice: 1 10 years

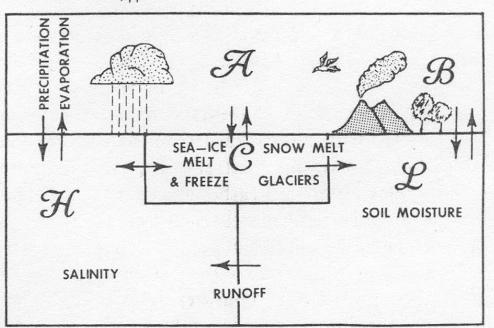
THE TOTAL CLIMATE SYSTEM AND ITS SUBSYSTEMS

- $\mathcal{A} = \operatorname{atmosphere}$
- $\mathcal{H} = hydrosphere (ocean)$
- C = cryosphere (snow & ice)
- \mathcal{L} = lithosphere (land)
- \mathcal{B} = biosphere

(Source: Peixoto and Oort 1992)

B: biosphere (terrestrial)

- **Bio-geophysical interaction**: albedo, evaporation, roughness
- Bio-geochemical interaction:
 - photosynthesis and respiration of carbon
 - Impact on CH₄ emissions
- Time scales:
 - physiology (reaction of the stomata): minutes
 - succession: 30 150 years,
 - migration: 300 1500 years


B: biosphere (marine)

- carbon pumpe (time scales as in the terrestrial environment)
- CO₂- sink / source

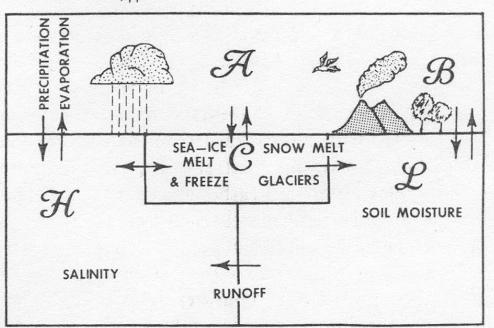
THE TOTAL CLIMATE SYSTEM AND ITS SUBSYSTEMS

- $\mathcal{A} = \operatorname{atmosphere}$
- $\mathcal{H} = hydrosphere (ocean)$
- C = cryosphere (snow & ice)
- \mathcal{L} = lithosphere (land)
- \mathcal{B} = biosphere

(Source: Peixoto and Oort 1992)

P: pedosphere (outermost layer of the Earth composed of soils)

- Time scales of heat and water storage depend on the layer depth:
 - daily cycle: about 10-30 cm
 - annual cycle: few meters


L: lithosphere (crust and the upper Earth mantle)

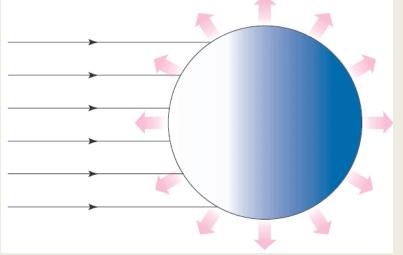
- Important impact factors: orography, biogeochemistry (vulkanoes)
- Time scales: 10⁷... years
 - formation of the Himalayas: 10⁶ years
 - Formation of the Alps: 10⁶ years
 - continental drift: 10⁸ years

THE TOTAL CLIMATE SYSTEM AND ITS SUBSYSTEMS

- $\mathcal{A} = \operatorname{atmosphere}$
- $\mathcal{H} = hydrosphere (ocean)$
- C = cryosphere (snow & ice)
- \mathcal{L} = lithosphere (land)
- \mathcal{B} = biosphere

(Source: Peixoto and Oort 1992)

 $\gamma_{surf} =$ $T_{surf} =$ Radiation balance (zero order model)


$$\begin{split} \gamma_{surf} \frac{dT_{surf}}{dt} &= F_{solar} + F_{thermal} \\ \gamma_{surf} &= \text{ heat capacity } [J/m^2/K] \\ T_{surf} &= \text{ surface temperature } [K] \\ F_{solar} + F_{thermal} &= \text{ forcing terms } [W/m^2] \end{split}$$

(Source: D. Dommenget)

A very simple climate model

 Assume balance between outgoing and incoming radiation on long term basis

$$F_E = \sigma T_E^4 = \frac{(1-A) \,\mathrm{s_0}}{4} = 239.4 \,\mathrm{W} \,\mathrm{m}^{-2}$$

$$T_E = \sqrt[4]{\frac{F}{\sigma}} = 255 \text{ K}$$

(Courtesy: E. Kjellström)

solar constant (S_o) 1368 W m⁻² planetary albedo (A) 30% Stefan Boltzmann constant $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ T_F radiation temperature

Reflection

- Incoming radiation may be reflected by clouds, particles or by the ground
- The albedo (A) is the ratio between reflected and incoming radiation
- Cloud albedo varies (50-90%)
- Global average ca 30% (including clouds)

(Courtesy:	Ε.	Kjellström)
------------	----	-------------

Properties of the ground	Albedo (%)
Snow	75-95
Old snow	50-70
Ice	30-40
Sand	20-30
Grass	15-20
Forest	5-20
Water	3-10
Water (Sun close to horizon)	10-100

Climate of the Ocean

BNIZ INSTITUTE FOR

Lecture 1: Introduction and fundamental processes of the climate system

Radiation balance of various planets

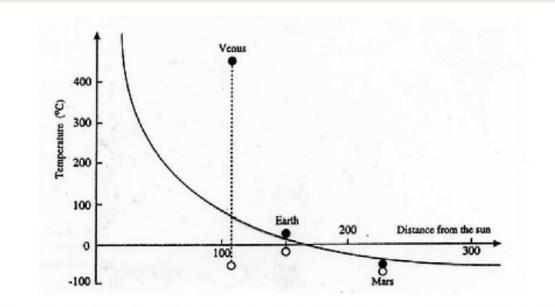
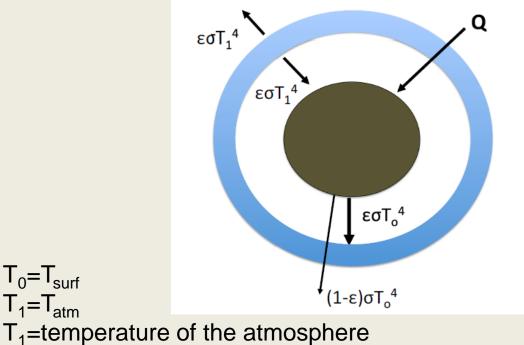



Figure 2.5: Distance from the Sun versus radiation temperature of a black body absorbing the incoming sun light (solid line). The black filled circles mark the observed T_{surf} of Venus, Earth and Mars and the black unfilled circles mark the radiation temperature of the planets according to their abserved albedo.

(Source: D. Dommenget)

Greenhouse effect illustrated by Greenhouse shield models

 $Q = \frac{1}{4}(1 - \alpha_p)S_0$

Earth surface: $Q - \sigma T_0^4 + \epsilon \sigma T_1^4 = 0$ **atmosphere:** $+\epsilon\sigma T_0^4 - 2\epsilon\sigma T_1^4 = 0$ $\sigma T_{rad}^4 = \epsilon \sigma T_1^4 + (1 - \epsilon) \sigma T_0^4 = Q$ space:

$$\Rightarrow T_{surf}^4 = \frac{1}{1 - \frac{1}{2}\epsilon} T_{rad}^4$$

$$\Rightarrow \epsilon = 2(1 - \frac{T_{rad}^4}{T_{surf}^4}) = 0.77$$

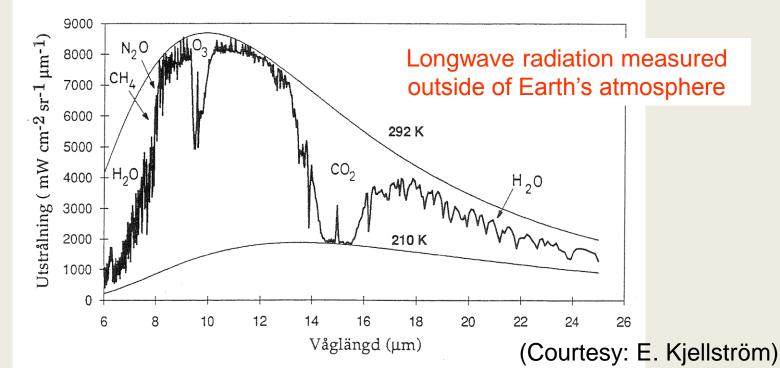
ε<1 emissivity

 $T_0 = T_{surf}$

 $T_1 = T_{atm}$

Atmosphere absorbs the portion ε of the thermal radiation

(Source: D. Dommenget)


Exercise: prove and calculate T_{surf}, T_{atm}

Longwave radiation

- Emitted radiation at the Earth's surface 4-100µm (maximum at around 10µm)
- Absorption in the atmosphere in wavelength bands

Climate of the Ocean

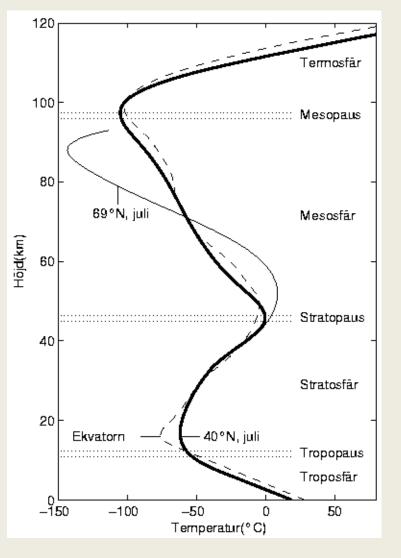
Gaseous constituents


Constituent	Mol. Wt.	Conc. by vol.
Nitrogen (N ₂)	28.013	0.7808
Oxygen (0_2)	32.000	0.2095
Argon (Ar)	39.95	0.0093
Carbon dioxide (C	<i>O₂) 44.01</i>	387 ppmv (2009)
Neon (Ne)	20.18	18
Helium (He)	4.00	5
Methane (CH_{4})	16.	1.78 "
Hydrogen (H_2)	2.02	0.5 "
Nitrous oxide (N ₂ C)) 56.03	0.3 "
Ozone (O ₃)	48.00	0-0.1 "
In addition		

Water	vanor	(H,O)
valu	vapor	$(1_2 0)$

18.02

variable


(Courtesy: E. Kjellström)

Vertical distribution of temperature

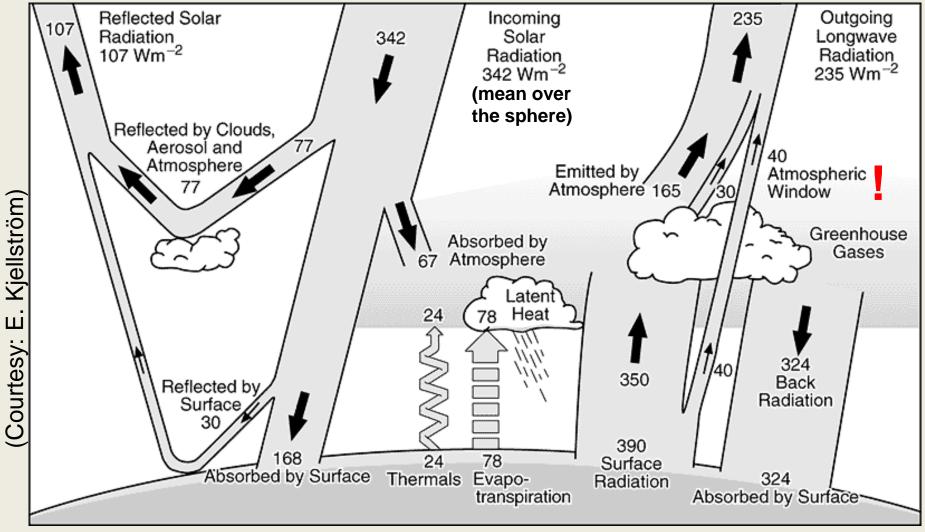
- Troposphere, Stratosphere, Mesosphere and Thermosphere
- Tropopause, Stratopause, Mesopause
- Most water vapour and thereby related clouds and weather exists in the troposphere
- Ionosphere (upper part of the mesosphere and the thermosphere)

(Courtesy: E. Kjellström)

The greenhouse effect

- Most incoming solar radiation (shortwave) passes through the atmosphere
- Outgoing terrestrial radiation (longwave) is absorbed and reemitted in the atmosphere
- Reemission takes place at higher levels where temperatures are lower
- This implies that less energy escapes to space than what would be the case without an atmosphere
- The net effect is a warming of the surface

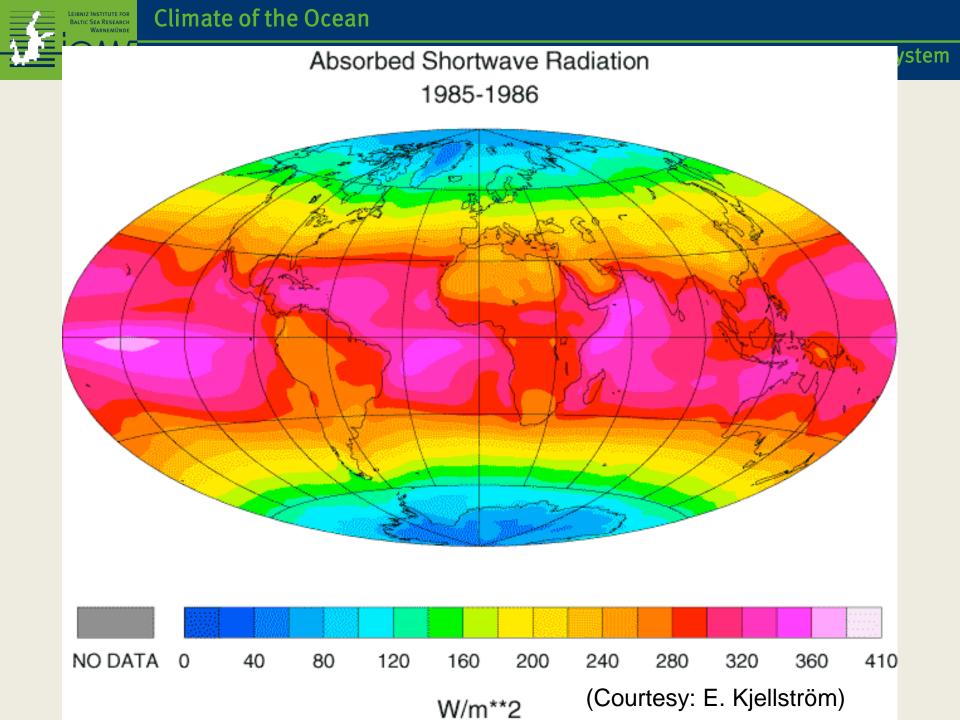
(Courtesy: E. Kjellström)

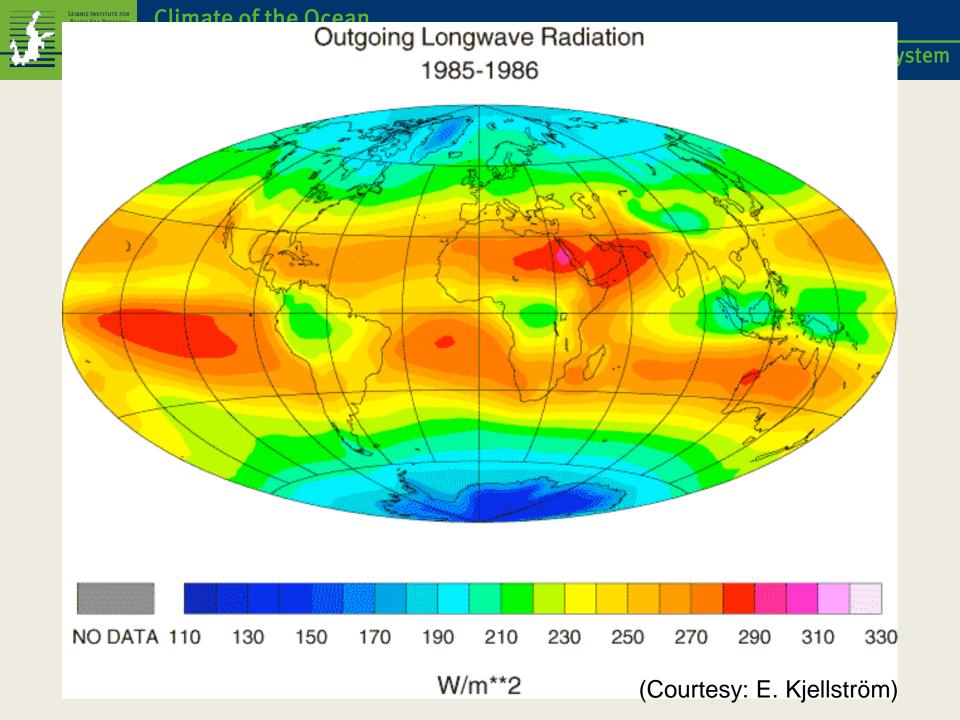


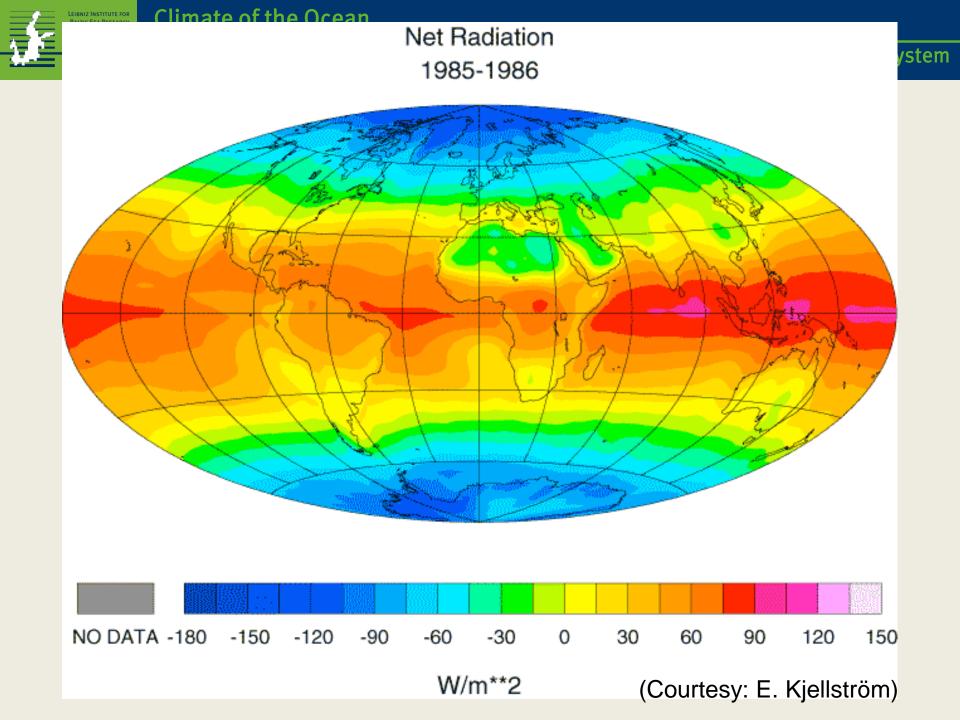
A simple model including the greenhouse effect

 $S(1-\alpha)$ $\begin{cases} \overline{S}(1-\alpha) = F_a + \tau_{lw}F_g & \text{At the TOA} \\ F_g = F_a + \tau_{sw}\overline{S}(1-\alpha) & \text{At the ground} \end{cases}$ F_a $\tau_{lw}F_{g}$ Atmosphere T_a eliminate F_a $\tau_{sw} \bar{S}(1-\alpha)$ F_a↓ F_g $F_g = \sigma T_g^4 = \overline{S}(1-\alpha) \frac{1+\tau_{sw}}{1+\tau_{tw}}$ Ground T_a $S = 342 \text{ Wm}^{-2}, \alpha = 0.31, \tau_{sw} = 0.71, \tau_{lw} = 0.10$ transmissivity \Rightarrow $T_{o} \approx 284$ K = 11 °C (Courtesy: E. Kjellström)

Albedo=107/342=31% Global energy balance 342-107=235!!

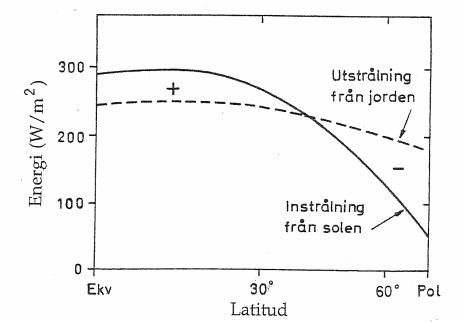



Absorberat i mark/hav=168/342=49%


168-24-78-390+324=0!!

Atmosfärens transmisitivitet (sw)=168/(342-107)=0.71

Atmospheric transmissivity (lw)=40/390=0.10



Radiation balance of the Earth

• Net energy gain (loss) at low (high) latitudes ...

• ... leads to heat transport in the atmosphere and oceans (Courtesy: E. Kjellström)

eibniz Institute for Baltic Sea Research

Lecture 1: Introduction and fundamental processes of the climate system

Greenhouse model with ice-albedo feedback (Budyko, 1969)

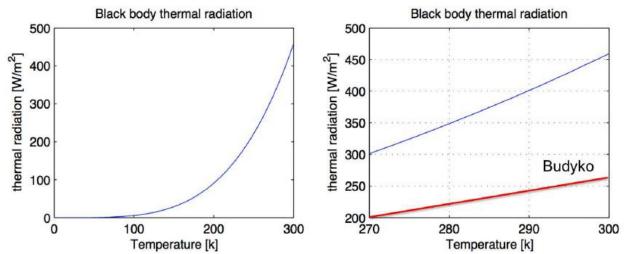
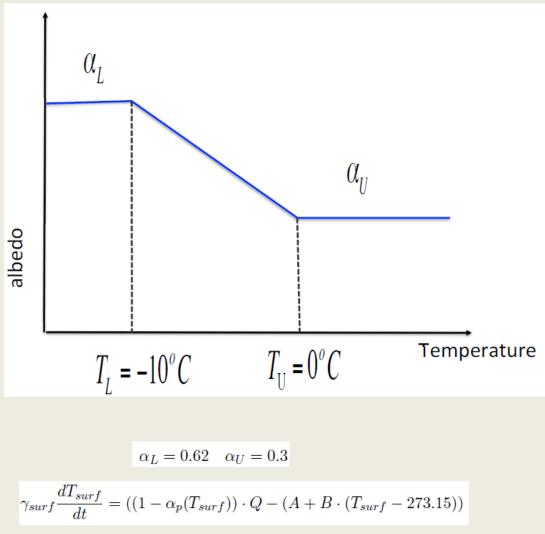
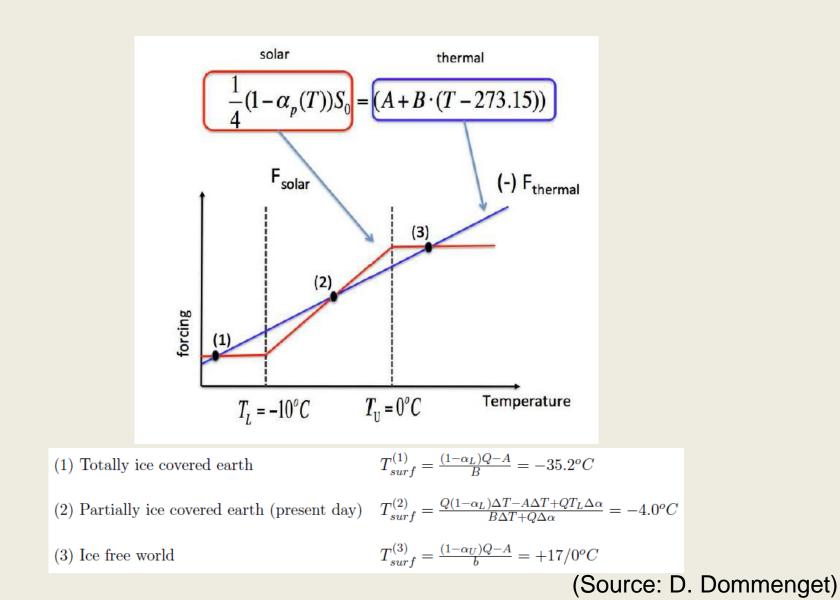
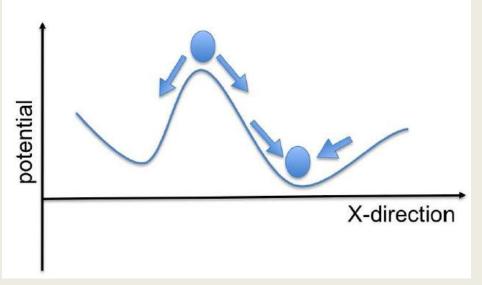



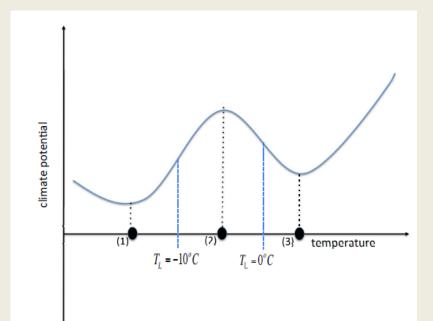
Figure 2.10: Black body thermal radiation: left: Black body thermal radiation for a wide range of temperatures. right: Black body thermal radiation (blue line) for a range of temperature closer to the earth climate in comparison to the Budyko linear model (red line).


 $-F_{thermal} = A + B \cdot (T_{surf} - 273.15)$

LEIBNIZ INSTITUTE FOR BALTIC SEA RESEARCH

Lecture 1: Introduction and fundamental processes of the climate system



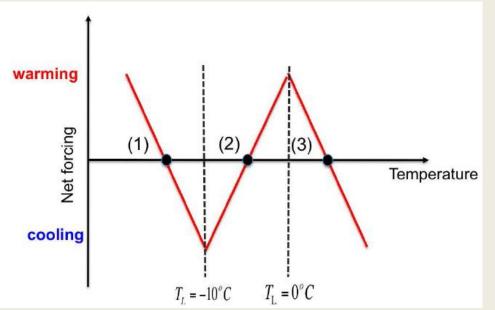

Climate potential

$$P(T_{surf}) = -\int F_{net} \quad dT_{surf}$$

$$P_{Budyko}(T_{surf}) = -\int (1 - \alpha_p(T_{surf}))Q - (A + BT'_{surf}) \quad dT_{surf}$$

Analog: Mechanics <-> Climate

Climate stability

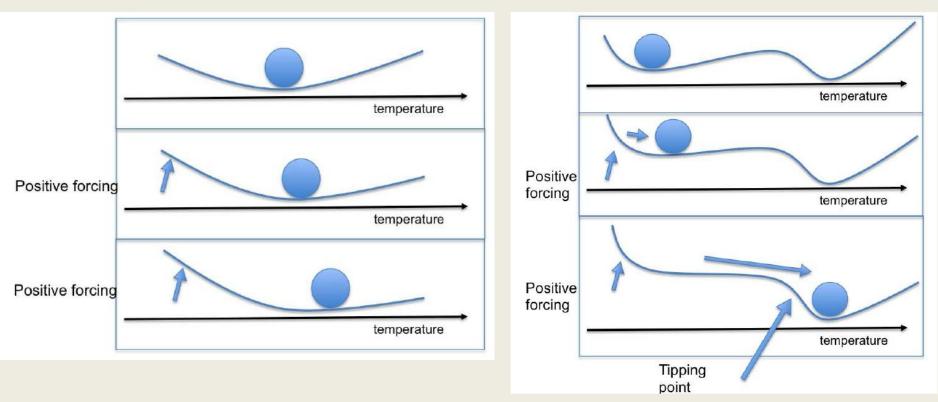

For stable equilibrium:

 $\frac{dF_{net}}{dT}(T^{eq}_{surf}) < 0$

And for unstable equilibrium:

$$\frac{dF_{net}}{dT}(T^{eq}_{surf}) > 0$$

$$F_{net} = ((1 - \alpha_p(T_{surf})) \cdot Q - (A + B \cdot (T_{surf} - 273.15))$$

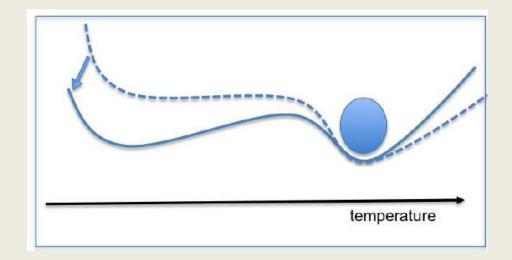


(1) Totally ice covered earth	\rightarrow stable
(2) Partially ice covered earth (present day)	\rightarrow unstable
(3) Ice free world	\rightarrow stable

LEIBNIZ İNSTITUTE FOR BALTIC SEA RESEARCH WARNEMÜNDE **Climate of the Ocean**

Lecture 1: Introduction and fundamental processes of the climate system

Tipping points


Zero order model (no feedbacks)

Budyko model with the ice-albedo feedback

Lecture 1: Introduction and fundamental processes of the climate system

Tipping point: climate change is irreversible

Climate sensitivity

Temperature change (or any other climate variable of interest) per change in forcing

 $\Rightarrow \Delta T = \lambda \cdot \Delta Q$

 $\lambda := \frac{\Delta T}{\Delta Q}$

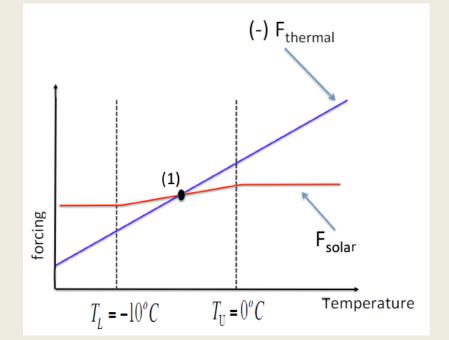
Example 1: IPCC (2007) $\rightarrow \lambda = \frac{\Delta T}{\Delta Q} = \frac{3.0K}{6W/m^2} = 0.5K/\left(\frac{W}{m^2}\right)$

Example 2: Zero order model

$$T = \left(\frac{1}{\sigma} \frac{(1-\alpha_p)}{4} S_0\right)^{\frac{1}{4}} = \left(\frac{Q}{\sigma}\right)^{\frac{1}{4}}$$

$$\lambda = \frac{dT}{dQ} = \frac{1}{\sigma} \frac{1}{4} \left(\frac{Q}{\sigma}\right)^{\frac{1}{4}-1} = \frac{1}{\sigma} \frac{1}{4} \frac{\left(\frac{Q}{\sigma}\right)^{\frac{1}{4}}}{\left(\frac{Q}{\sigma}\right)} = \frac{1}{4} \frac{\left(\frac{Q}{\sigma}\right)^{\frac{1}{4}}}{Q} = \frac{1}{4} \frac{T_{rad}}{Q} \approx \frac{1}{4} \frac{255K}{240W/m^2} = 0.27K/\left(\frac{W}{m^2}\right)^{\frac{1}{4}} = \frac{1}{2} \frac{1}{2} \frac{W}{Q} = $

Climate sensitivity II


Example 3: Budyko model without ice-albedo feedback ($\alpha_P=0.3$)

 $\left(\left(1 - \alpha_p(T_{surf})\right) \cdot Q = A + B \cdot \left(T_{surf} - 273.15\right)\right)$

$$\Rightarrow \lambda = \frac{(1 - \alpha_p)}{B} = 0.33 K / \frac{W}{m^2}$$

Example 4: Budyko model with ice-albedo feedback

$$\frac{\Delta \alpha_p}{\Delta T} = -0.003 K^{-1}$$

 $\Rightarrow \lambda = 0.66 K / \frac{W}{m^2}$

larger sensitivity due to the positive feedback (Source: D. Dommenget)

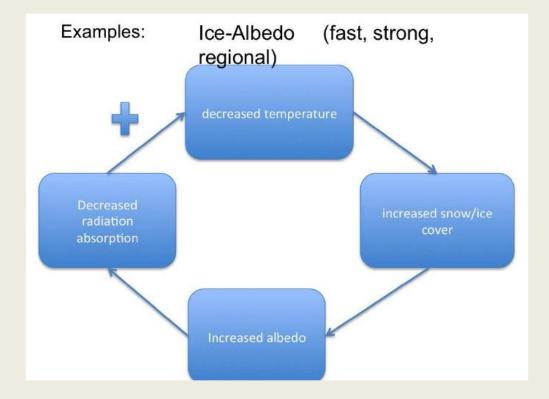
Feedbacks

Definition:

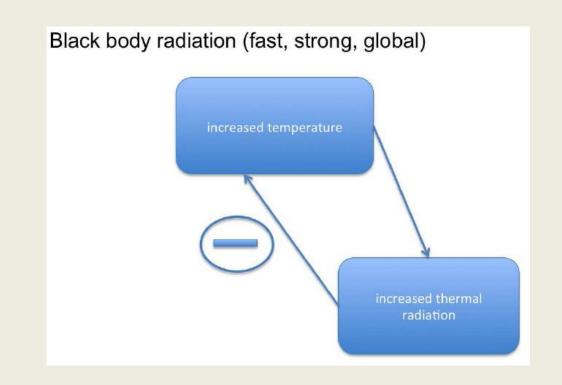
$$C_f := \frac{dF}{dT_{surf}}$$

Example: simple linear climate model

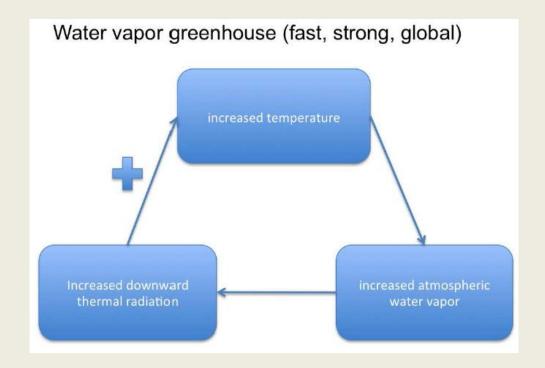
$$\gamma \frac{dT}{dt} = C_f \cdot T + Q$$

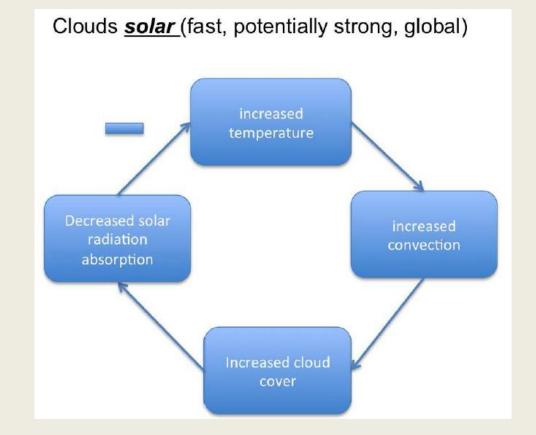

Climate feedback parameter C_f

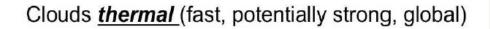
Equilibrium temperature:

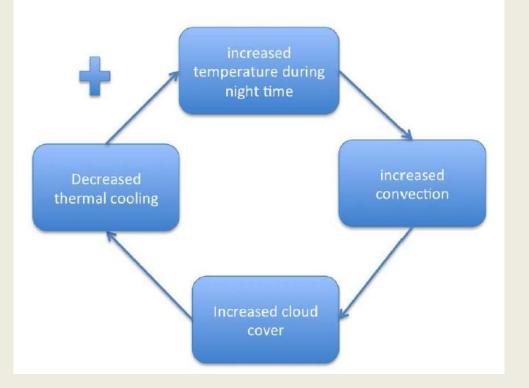

$$\Rightarrow T_{eq} = \frac{Q}{-Cf}$$

$$\lambda = \frac{dT}{dQ} = \frac{1}{-Cf}$$









Thank you very much for your attention!

